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1 Introduction

A polymer is a chain of several polyatomic units called monomers bonded
together. Given the diversity of possible monomeric units and ways in which
they can be bound together, there is a myriad of naturally occurring polymers
with enormous diversity in their properties. For example, proteins, glass,
rubber, DNA, plastics, and chewing gum all consist of polymers. Given their
ubiquity and importance in so many systems, attempts to model polymers
have aggressively proceeded from many different fronts of attack. This brief
summary serves to introduce the reader to some of the basic models used
to describe polymers in solution. This document is very much a work in
progress, and for the time being contains only the simplest descriptions of
single-molecule models for non-branched polymers.

The reader is assumed to have a reasonable math background (including
some knowledge of probability and statistics and partial differential equa-
tions) and have some knowledge of elementary statistical mechanics.

The development follows primarily from [1, 2, 3, 4], and many results are
shown without direct references at this early stage in the development of the
document.

2 Discrete models

A polymer in solution may look like a long string of spaghetti in a bowl, like
a stiff rod, or somewhere in between. Whatever its stiffness or configuration,
it is constantly bombarded by random collisions with the solvent molecules,
thereby continuously changing its configuration. For the time being, we will
not investigate the dynamics of polymer diffusion, but rather look at static,
time-averaged properties of polymers by employing a number of different
models. Note that those presented are just the simplest, most instructive
models, and there are many other representations for polymeric chains.

2.1 The freely jointed chain

One of the simplest models for a polymer is the freely jointed chain, or FJC.
In the FJC model, a polymer is approximated as a series of N straight
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Figure 2.1: A drawing of a polymer and its representation as a FJC. Note that ri =

Ri −Ri−1 and that R = RN −R0 =
N∑
i=1

ri. The Ri’s are not important for the present

discussion, but become important as we move from discrete to continuous models in section
3.

segments of a given length, b, as depicted in figure 2.1. The orientation of
each segment of the FJC is independent of all others. The segment length, b,
is called the Kuhn statistical length and describes the stiffness of the chain.
If the Kuhn length is large, the chain tends to be stiff. Smaller Kuhn lengths
are characteristic of more flexible chains. ∗ In such a way, the parameter b
describes the nature of short-range self-interactions of the polymer. In other
words, if the orientation of a given small piece of the polymer is strongly
correlated to the small piece immediately before it, b will be large, but if
the orientation of the small piece of the polymer is unrelated to that of the
piece immediately before it, b will be small. So the Kuhn statistical length
describes the minimum length between two points on a polymer that are
essentially uncorrelated.

Since the orientation of each successive statistical segment vector (hence-
forth referred to as simply “segment” for brevity), ri, is completely indepen-
dent of all others, our model is without long-range self-interactions. This

∗It should be noted that, strictly speaking, this is not precisely a measure of the chain
stiffness, since a Gaussian chain has no stiffness. The Kuhn statistical length is formally
only a measure of chain stiffness for the Kratky-Porod wormlike chain. [5]
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means that the chain can bend back and lay over itself. While this is physi-
cally unrealistic, the FJC model is still extremely useful and often produces
reasonable results in describing experimentally observed phenomena (e.g. in
[6]).

Naturally, we would like the models we develop to provide all relevant
thermodynamic information. Therefore, we would ultimately like to be able
to compute partition functions for polymer conformations. Rather than com-
pute partition functions based on probability distributions for all possible
conformations, it is more convenient to use a probability distribution for
the end-to-end vector of the chain, R † , or the radius of gyration, Rg (the
average distance of the polymer from its center of mass). These quantities
may be measured experimentally by light scattering experiments or by novel
more recently developed single molecule experiments (e.g. [6]). This is anal-
ogous to using few-particle reduced distribution functions in other areas of
statistical mechanics. [2] Therefore, we fill focus much of the discussion on
characterizing the end-to-end vector, R, which is easier to handle than Rg.

Let Φ(R, N) be the probability distribution function for R given that
we have a chain of N segments. Since the orientation of each segment is
independent of all others, Φ(R, N) will approach a Gaussian distribution for
large N by the central limit theorem. Therefore, we need only to consider
the first and second moments to completely describe the distribution.

The first moment is easily calculated as

〈R〉 =

〈
N∑
i=1

ri

〉
=

N∑
i=1

〈ri〉 = 0 (2.1)

since 〈ri〉 = 0 ∀ i because the orientation of each vector is randomly dis-
tributed. The second moment is also easily calculated:

R2 ≡ R ·R =

(
N∑
i=1

ri

)2

=
N∑
i=1

r2
i + 2

N∑
i=1

N−i∑
j=1

ri · ri+j. (2.2)

⇒
〈
R2
〉

=
N∑
i=1

〈
r2
i

〉
+ 2

N∑
i=1

N−i∑
j=1

〈ri · ri+j〉 = N
〈
r2
i

〉
= Nb2 (2.3)

†Here, R is defined to be the end-to-end vector. In section 3, when we begin looking
at continuous models, R is a continuous representation of the vectors Ri in figure 2.1.
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because 〈rn · rm〉 = 0 ∀ m 6= n since they are uncorrelated. Given the second
moment, we arrive at the formal definition for the Kuhn statistical length:

b ≡ lim
L→∞

〈R2〉
L

(2.4)

where L is the total path length of the chain, equal to Nb in this case. Taking
the limit in equation (2.4) is then trivial for the FJC. The second moment is
often used as a characteristic length of the chain. We have determined, then,
that for a FJC,

R̄ ≡
√
〈R2〉 = b

√
N. (2.5)

Given both moments, Φ(R, N) is a Gaussian distribution with zero mean
and a variance of

σ2 =
〈
R2
〉
− 〈R〉2 = Nb2. (2.6)

Thus,

Φ(R, N) =

(
3

2πNb2

) 3
2

exp

(
− 3R2

2Nb2

)
. (2.7)

Using Φ(R, N), we can obtain interesting insights on thermodynamic
properties. Following the development of [3], we assume that all conforma-
tions with a given end-to-end distance are of equal energy. Then, we can
obtain the entropy of the chain by equation (2.7) using the standard method
and absorbing all constants into the reference entropy.

S (R, N) ∝ k ln (Φ(R, N))

⇒ S = S0 −
3kR2

2Nb2
(2.8)

The free energy is then

F = E − TS = F0 +
3kTR2

2Nb2
(2.9)

We see that the free energy is related quadratically to the end-to-end vector,
as if the chain is an “entropic spring”.

An exact solution for the FJC is derived in section 5 of [1]. As seen in
figure 2.2, our approximate Gaussian distribution works well, even for N ∼ 4.
The most important shortcoming is that the Gaussian distribution gives a
finite probability that the chain is longer than its path length. However, for
most purposes, the Gaussian approximation works very well.
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Figure 2.2: A plot of the exact and approximate solutions for a FJC. The approximation
of large N appears to be reasonable even when N is below 10.
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Figure 2.3: A drawing of a Gaussian chain. Although they are not shown, the vectors Ri

are defined analogously as in the FJC model. When the spring constant is appropriately
chosen for the harmonic oscillators (see equation (2.10)), the distribution function for R
is identical to that of a FJC.

2.2 The Gaussian chain

A common model used to describe polymers is a Gaussian chain, depicted in
figure 2.3. A Gaussian chain is modeled as a collection of beads connected
by springs functioning as harmonic oscillators. We define the potential the
spring exerts of two successive beads as

U0 (ri) =
3

2b2
kTr2

i (2.10)

where ri is the vector between them, T is the temperature, and k is Boltz-
mann’s constant. Notice that the spring constant is similar to that expressed
in the “entropic spring” description of the free energy of the FJC. With such
a definition for the potential of a harmonic oscillator, the average displace-
ment of the two beads is b, as we will see shortly, which correlates to the
length of the segments of a FJC.

For the Gaussian chain, our approach to finding the distribution function
for the end-to-end vector will be different than in the example of a FJC. We
start by finding the distribution function for a single segment, ψ (ri). The
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probability will be Boltzmann weighted, so we have

ψ (ri) ∝ exp

(
−U0

kT

)
= exp

(
−3r2

i

2b2

)
. (2.11)

Now we just have to normalize it, defining c as the normalization constant
and ri ≡ |ri| and utilizing a Gaussian integral.∫

dri ψ (ri) = c

2π∫
0

dφ

π∫
0

dθ sin θ

∞∫
0

dri r
2
i exp

(
−3r2

i

2b2

)

= 4πc

∞∫
0

dri r
2
i exp

(
−3r2

i

2b2

)
= c

(
2πb2

3

) 3
2

= 1

⇒ c =

(
3

2πb2

) 3
2

⇒ ψ (ri) =

(
3

2πb2

) 3
2

exp

(
−3r2

i

2b2

)
. (2.12)

This is a Gaussian distribution with 〈r2
i 〉 = b2, thus verifying our claim of an

average bond length of b.

Since each segment is unrelated to the others, we can now write the
conformational distribution function, Ψ ({ri} , L), which describes all possible
spacial orientations of the ri’s for a chain of total path length L.

Ψ ({ri} , L) =
N∏
i=1

ψ (ri) =

(
3

2πb2

) 3N
2

exp

(
− 3

2b2

N∑
i=1

r2
i

)
. (2.13)

Now that we have the conformational distribution function, we can get
the end-to-end distribution function by

Φ (R, N) =

∫
dr1

∫
dr2 · · ·

∫
drN δ

(
R−

N∑
i=1

ri

)
Ψ ({ri} , L) , (2.14)

where the delta function serves to enforce that the end-to-end vector is given
by the sum of the segments. The calculation of the integral is lengthy and is
omitted here, but the result is

Φ(R, N) =

(
3

2πNb2

) 3
2

exp

(
− 3R2

2Nb2

)
. (2.15)
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The chain is thusly called a Gaussian chain because the bond lengths and
the end-to-end vector are Gaussian distributed. It should be noted that this
model is by no means an adequate description of the local properties of the
chain, but gives the same end-to-end vector distribution function as the FJC.
For many applications, especially when the continuous analogs of the models
are used, the Gaussian chain is the easiest to deal with mathematically and
is therefore often used in place of the FJC (as we will do in section 3.1).

We note now that since each segment of the Gaussian chain is independent
of the others, a chain of length N may be constructed by stringing two
chains of length N1 and N2 together with N1 + N2 = N . Noting this, we
can trivially find the distribution function of the vector connecting any two
arbitrary segments m and n in a Gaussian chain.

Φ (Rn −Rm, n−m) =

(
3

2πb2 |n−m|

) 3
2

exp

(
−3 (Rn −Rm)2

2b2 |n−m|

)
. (2.16)

And similarly, 〈
(Rn −Rm)2〉 = |n−m| b2. (2.17)

Now we will calculate the mean square radius of gyration, R2
g, which is

the mean square distance between all the segments in the chain. Physically,
this is the average distance of the chain from the center of mass,RG. Thus,
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we can compute R2
g following the development in [4].

RG =
1

N

N∑
m=1

Rm (2.18)

⇒ R2
g =

1

N

N∑
i=1

〈
(Ri −RG)2〉

=
1

N

N∑
i=1

〈(
Ri −

1

N

N∑
m=1

Rm

)2〉

=
1

N

N∑
i=1

〈
R2
i −

2Ri

N
·

N∑
m=1

Rm +
1

N2

N∑
m=1

N∑
j=1

Rm ·Rj

〉

=

〈
1

N

N∑
i=1

R2
i −

1

N2

N∑
i=1

N∑
m=1

Ri ·Rm

〉

=
1

2N2

N∑
i=1

N∑
m=1

〈
(Ri −Rm)2〉 . (2.19)

Using equation (2.17), we can complete the calculation.

R2
g =

1

2N2

N∑
m=1

N∑
n=1

|n−m| b2 ≈ b2

2N2

N∫
0

dn

N∫
0

dm |n−m|

=
b2

N2

N∫
0

dn

n∫
0

dm (n−m) =
N

6b2
=
〈R2〉

6
. (2.20)

Approximating the sum as an integral gives a closed-form solution and is
reasonable for large N . Figure 2.4 shows a comparison of the exact (given by
the sum) and the approximate closed-form mean square radius of gyration.

2.3 The freely rotating chain

Another reasonable model to describe chains absent of long-range self-interactions
is the freely rotating chain. A drawing of a freely rotating chain is shown in
figure 2.5. The angle θ is fixed for each segment, but each segment can freely
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Figure 2.4: A comparison of the approximate and exact mean square radii of gyration
for a Gaussian chain. The approximation is reasonable even for N ∼ 10 and below.
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Figure 2.5: At left, a 2-D representation of a freely rotating chain. As before, although
they are not shown, the vectors Ri are defined analogously as in the FJC model in figure
2.1 and the lengths of each ri is again b. Note that full rotation is permissible about each
bond in the φ direction, as shown at right. Note also that each successive segment is not
independent of those previous to it. In such a way, the chain can exhibit stiffness for small
N .

rotate in the φ direction. The distribution function for the end-to-end vector,
R, is difficult to obtain for the discrete case (we will examine a continuous
limit of this chain, called a Kratky-Porod wormlike chain, in a subsequent
section), so we will only compute R̄2 = 〈R2〉 here. This alone is enlightening
because it provides interesting insights into the limiting cases of this model
and the nature of the inherent stiffness.

Since equation (2.2) is general, it also holds for the freely rotating chain.
A recursion relation is needed to calculate 〈ri · ri+j〉. The relationship is
derived by successively projecting each segment vector, ri, onto the unit
vector along the direction of the subsequent one, ri+1. Thus,

ri =
(ri · ri+1) ri+1

|ri+1|2
=

(ri · ri+1) (ri+1 · ri+2) · · · (ri+j−2 · ri+j−1)

(b2)j−1 ri+j−1.(2.21)

So, we have ri in terms of dot products of successive segments. We know from
elementary vector geometry that the dot product of the successive segments
is

〈ri · ri−1〉 = b2 cos θ. (2.22)
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The vector ri is then given by

ri =
(b2)

j−1
(cos θ)j−1

(b2)j−1 ri+j−1 = (cos θ)j−1 ri+j−1. (2.23)

Now we can calculate the relevant quantity:

〈ri · ri+j〉 = (cos θ)j−1 〈ri+j−1 · ri+j〉 = b2 (cos θ)j . (2.24)

Given that 〈r2
i 〉 = b2, we have

〈
R2
〉

=
N∑
i=1

〈
r2
i

〉
+ 2

N∑
i=1

N−i∑
j=1

〈ri · ri+j〉

= b2

(
N + 2

N∑
i=1

[
N−i∑
j=1

(cos θ)j
])

. (2.25)

The sum in square brackets is itself a geometric series in cos θ with

N−i∑
j=1

(cos θ)j =
cos θ

(
1− (cos θ)N−i

)
1− cos θ

. (2.26)

Now we have

N∑
i=1

N−i∑
i=1

(cos θ)j =
N∑
i=1

cos θ
(

1− (cos θ)N−i
)

1− cos θ

=
cos θ

1− cos θ

N∑
i=1

1− (cos θ)N−i

=
cos θ

1− cos θ

(
N −

N∑
i=1

(cos θ)N−i
)

=
cos θ

1− cos θ

(
N − (cos θ)N

N∑
i=1

(sec θ)i
)
. (2.27)

The summation is a geometric series in sec θ. Using this fact and some
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algebraic manipulations, we obtain

N∑
i=1

N−i∑
i=1

(cos θ)j =
cos θ

1− cos θ

N − (cos θ)N
sec θ

(
1− (sec θ)N

)
1− sec θ


=

N cos θ

1− cos θ

(
1− 1− (cos θ)N

N (1− cos θ)

)
. (2.28)

Substitution of equation (2.28) into (2.25) yields the final result of

〈
R2
〉

= Nb2

(
1 +

2 cos θ

1− cos θ

(
1− 1− (cos θ)N

N (1− cos θ)

))

= Nb2

(
1 + cos θ

1− cos θ
− 2 cos θ

N

1− (cos θ)N

(1− cos θ)2

)
. (2.29)

Clearly, if N is large, the second term vanishes and we get

R̄ ≡
√
〈R2〉 = b

√
N

(
1 + cos θ

1− cos θ

)
, (2.30)

which shows that, as in the case of the FJC and Gaussian chains, the end-
to-end distance scales as

√
N . However if the second term is non-zero, the

chain is said to have “stiffness.”

To characterize how stiff the chain is, we wish to find some relationship
describing the “memory” of the chain. Suppose the first segment of the chain
points in the direction u0. We now ask, how does the end-to-end vector of
the chain, R, correlate with the original orientation, u0? If R is on average
along the same direction as the original orientation, the chain is very stiff. If
not, it is more flexible. Thus, it is natural to calculate

〈R · u0〉 =

〈
R · r1

|r1|

〉
=

1

b

〈
r1 ·

N∑
i=1

ri

〉
=

1

b

N∑
i=1

〈r1 · ri〉 =
1

b

N∑
i=1

b2 (cos θ)i−1

= b

N∑
i=1

(cos θ)i−1 = b
1− (cos θ)N

1− cos θ
. (2.31)

We used the results from equations (2.24) and (2.26) to arrive at this result.
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Figure 2.6: A plot of R̄ ≡
√
〈R2〉 vs. ξp for a freely rotating chain. Note that R̄ goes

to zero as ξp goes to zero. The appearance to the contrary in the plot is an artifact of the
logarithmic scaling.

In the limit of a long chain (large L = Nb),

lim
L→∞

〈R · u0〉 ≡
1

2λ
≡ ξp =

b

1− cos θ
, (2.32)

where ξp is called the persistence length of the chain. This describes the
stiffness in the chain in that it describes how long the orientation of the
chain persists through its length. Clearly, the smaller θ is, the stiffer the
chain will be. A θ of zero corresponds to a completely rigid rod. Figure 2.6
shows how R̄ ≡

√
〈R2〉 varies with ξp for a freely rotating chain.

3 Continuous models

The models proposed thus far present a polymer chain as a set of discrete
segments that have some relationship to each other. Based on the nature of
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these relationships, we can construct a continuous model of the polymer that
describes the same characteristics as the discrete model.

3.1 The continuous Gaussian chain

In the discrete FJC, the segment length and the Kuhn statistical lengths were
one and the same. When we take a continuous limit, though, we naturally
want the limit as the segment length goes to zero. Therefore, we need to draw
a distinction between the segment length and the Kuhn statistical length,
which, as stated before, is a representation of the stiffness of the chain. ∗

Therefore, we define the segment length to be ∆s, where s denotes path
length, and retain the same notation for the Kuhn statistical length, still
calling it b. Thus, b2 becomes b∆s in our current development.

Next, we note that the total path length of a chain is L = N∆s. This, of
course, must be preserved as we take the continuous limit.

The necessary limits to take to get the continuous description are now
obvious. We take ∆s → 0, N → ∞, and N∆s → L. We define this
limit as the functional integral limit (limFI), since it defines a functional
integral as a limit of the discrete chain. Since we will be integrating over the
conformational distribution function, given by equation (2.13), we seek

lim
FI

d {ri} Ψ ({ri} , L) = lim
FI

d {Ri} Ψ ({Ri} , L)

= lim
FI

(
N∏
i=0

dRi

)
Ψ ({Ri} , L) (3.1)

since the Ri’s are themselves simple functions of the ri’s.

For this analysis, we will follow the treatment of [2]. At first, we only

∗See footnote on page 2. The same comments apply to the persistence length. [5]
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consider the exponential.

lim
FI

exp

(
− 3

2b∆s

N∑
i=1

r2
i

)
= lim

FI
exp

(
− 3

2b

N∑
i=1

(
Ri −Ri−1

∆s

)2

∆s

)

= lim
FI

exp

(
− 3

2b

N∑
i=1

(
∂R

∂s

)2

∆s

)

= exp

− 3

2b

L∫
0

ds

(
∂R

∂s

)2
. (3.2)

Here, R = R (s) is the continuous representation of the discrete case vectors
Ri as a function of s and not the end-to-end vector of the chain. The lower
bound on the integral was obtained by defining the arbitrary reference point
for R to be the starting point of the chain.

Now we will take limFI of the differential.

lim
FI

N∏
i=0

dRi = DR. (3.3)

This denotes that the functional integral is defined as a limit of the iterated
integrals for the discrete chain.

Finally, we’ll take the limit for the normalization constant.

lim
FI

(
3

2πb∆s

) 3N
2

= (∞)∞ . (3.4)

This appears to be a problem. However, the normalization is necessary to
ensure that the probability that the chain will be in some conformation is
unity. Since it is just a normalization constant, it does not create any prob-
lems when using the conformational distribution function. An easy way to
deal with it is to define the normalization constant as N with the definition
δR ≡ N DR such that∫

R(0)=0

DR Ψ (R, L) =

∫
R(0)=0

DRN exp

− 3

2b

L∫
0

ds

(
∂R

∂s

)2


≡
∫

R(0)=0

δR exp

− 3

2b

L∫
0

ds

(
∂R

∂s

)2
 = 1.(3.5)
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Thus, we have arrived at a continuous conformational distribution func-
tion for a Gaussian chain. We found

lim
FI

d ({ri}) Ψ ({r} , L) = DR Ψ (R, L) = δR exp

− 3

2b

L∫
0

ds

(
∂R

∂s

)2
(3.6)

where R is a function of path length, s.

It should be noted that Ψ (R, L) may also be represented in terms of the
unit tangent vector, u. We recall from differential geometry that

u =
∂R

∂s
. (3.7)

Taking Ψ as a function of u and finding Du from the dui’s in a manner
similar to equation (3.3), we get

Du Ψ (u, L) = δu exp

− 3

2b

L∫
0

dsu2

. (3.8)

3.2 The continuous freely rotating chain (Kratky-Porod
wormlike chain)

To build a continuous analog to the freely rotating chain, we need to define
a limit analogous to limFI for the Gaussian chain. Naturally, we want to
retain similar limits as in limFI , so we put b→ 0, N →∞, and Nb→ L. We
still need to deal with θ. In the limit of b→ 0, the angle θ will go to zero, so
we impose θ → 0. Finally, we impose our definition of the persistence length
given by equation (2.32). We will denote this limit limworm, since it is the
limit to get a Kratky-Porod wormlike chain.

Because we did not derive an expression for the conformational distribu-
tion function for the freely rotating chain, we will only compute the contin-
uous analogs for the end-to-end vector 〈R2〉 and for 〈R · u0〉.

In the calculation of 〈R2〉,Recall equation (2.29), repeated here for con-
venience in reference:〈

R2
〉

= Nb2

(
1 + cos θ

1− cos θ
− 2 cos θ

N

1− (cos θ)N

(1− cos θ)2

)
.
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We first note that

(cos θ)N = exp (N ln (cos θ))

= exp

(
N

(
cos θ − 1− (cos θ − 1)2

2
+ · · ·

))

= exp

(
Nb

(
(cos θ − 1)

b
− (cos θ − 1)2

2b
+ · · ·

))
(3.9)

since the Taylor expansion for the natural logarithm function is given by

lnx =
∞∑
k=1

(−1)k+1 (x− 1)k

k
. (3.10)

To take limworm of this expression, we first apply equation (2.32), then put
θ → 0, and finally put Nb→ L to get

lim
worm

(cos θ)N = exp (−2λL). (3.11)

With equation (3.11) in hand, we can evaluate the limit.

lim
worm

〈
R2
〉

= lim
worm

Nb
b

1− cos θ
(1 + cos θ)−

(
b

1− cos θ

)2

cos θ
(

1− (cos θ)N
)

=
L

λ
− 1− exp (−2λL)

2λ2
. (3.12)

Recalling equation (2.31) and (3.11), we can easily calculate the contin-
uous analog for 〈R · u0〉 as

lim
worm

〈R · u0〉 = lim
worm

b

1− cos θ

(
1− (cos θ)N

)
=

1− exp (−2λL)

2λ
. (3.13)

Using equations (3.12) and (3.13) and the definitions in of equations (2.4)
and (2.32), we can calculate

b = lim
L→∞

〈R2〉
L

=
1

λ
(3.14)

and

ξp = lim
L→∞

〈R · u0〉 =
1

2λ
. (3.15)
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Therefore,

b = 2ξp, (3.16)

which is in general true. [5]

We can now look at important limiting cases. When the chain is much
longer than its persistence length (λL � 1), the efects of the stiffness on
the end-to-end vector become negligible. Conversely, when the chain is short
compared to its persistence length (λL � 1), the chain is very stiff. We
take the appropriate limits recalling equations (3.12) and (3.13), employing
l’Hôpital’s rule when necessary.

lim
λL→∞

〈
R2
〉

= lim
λL→∞

L

λ
− L2

2 (λL)2 (1− exp (−2λL)) =
L

λ
(3.17)

lim
λL→∞

〈R · u0〉 =
1

2λ
(3.18)

lim
λL→0

〈
R2
〉

= lim
λL→0

2λL− 1 + exp (−2λL)

2λ2

= lim
λL→0

2L2 (λL)− L2 + L2 exp (−2λL)

2 (λL)2

= lim
λL→0

2L2 − 2L2 exp (−2λL)

4λL

= lim
λL→0

4L2 exp (−2λL)

4
= L2 (3.19)

lim
λL→0

〈R · u0〉 = lim
λL→0

L
1− exp (−2λL)

2λL

= lim
λL→0

L
2 exp (−2λL)

2
= L (3.20)

Equations (3.17) and (3.18) give the random coil, (random flight) limit
and equations (3.19) and (3.20) give the stiff rod limit.

We will return to the Kratky-Porod wormlike chain (WLC) in section
3.4.2.
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3.3 The Green function

In section 3.1 we found the conformational distribution function for a Gaus-
sian chain, as given by equation (3.6). This signifies the probability distri-
bution function for the polymer over all conformational space. Although we
did not explicitly find them, these distributions exist for other models. This
distribution provides more information than we need or want to (or can)
deal with. Therefore, it is wise to find a reduced distribution function to
describe the system, since this is often all we need to extract thermodynamic
information from experiments.[2] A good choice (and one we’ve been dealing
with in most of our developments) is to use the end-to-end vector distribu-
tion function. We will define a conditional probability that fixes the end to
end vector such that the chain begins at R′ and ends at R with total path
length L. We call this the Green function (the rationale behind this name
will become clear later) and denote it as G (R,R′|L).

Given its definition, the Green function can be obtained by taking the
appropriate integral over the conformational distribution function.

G (R,R′|L) =

R(L)=R∫
R(0)=R′

δR Ψ (R, L) . (3.21)

Given the Green function, the conformational partition function for a
given end to end vector (R−R′) for a chain of total length L is given by

Z (R,R′|L) =

∫
dR dR′G (R,R′|L) . (3.22)

In a manner similar to that on page 8, we can piece together two (and
three and four and . . .) chains. This is represented in the property of the
Green function given by

G (R,R′|L) =

∫
dR′′G (R,R′′|L− l) G (R′′,R′|l) for l < L. (3.23)

An alternate (and equivalent) definition of the Green function is to define
its start at the origin, i.e. R′ = 0. Thus, its end-to-end vector is R−R′ = R.
Then the Green function is denoted simply by G (R|L).
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Often times other information pertaining to the conformation of the chain
is important. The Green functions in equations (3.21) and (3.23) are valid
for flexible chains. For chains with stiffness, the orientation, or unit tangent
vector, u, of the chain is also important. In such a case, we can still define
G from the conformational distribution function. The trick is to incorporate
the end-to-end vector, R (assuming R′ = 0) into the integral. Given that u
is the unit tangent vector for the chain,

R =

L∫
0

dsu. (3.24)

Recalling equation (3.8), we can define the Green function for a chain
with length L, starting at the origin, ending at R, with initial orientation
u0, and final orientation u as

G (R,u|u0, L) =

u(L)=u∫
u(0)=u0

δu δ

R−
L∫

0

dsu

Ψ (u, L) . (3.25)

3.3.1 The Green function for a Gaussian chain in an external field

Equation (3.6) gives the conformational distribution function for the Gaus-
sian chain. If we were to place the chain in an external field (defined per
unit length of the chain), Ue (R), the contribution of the field to the confor-
mational distribution function is Boltzmann weighted. Thus, we get

Ψ (R, L) ∝ exp

− 3

2b

L∫
0

ds

(
∂R

∂s

)2

− 1

kT

L∫
0

dsUe (R)

. (3.26)
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For the case of the Gaussian chain represented by equation (3.26), we get

G (R,R′|L) =

R(L)=R∫
R(0)=R′

δR Ψ (R, L)

=

R(L)=R∫
R(0)=R′

δR exp

− 3

2b

L∫
0

ds

(
∂R

∂s

)2

− 1

kT

L∫
0

dsUe (R)

 (3.27)

= lim
FI

∫
dR0 δ (R0 −R′)

∫ ( N∏
i=1

dRi

)
N δ (RN −R)

× exp

(
− 3

2b∆s

N∑
i=1

(Ri −Ri−1)2 − ∆s

kT

N∑
i=1

Ue

(
Ri −Ri−1

2

))
(3.28)

Note that the Green function is defined as a functional integral, a limit of an
iterated integral. [2]

3.3.2 The Green function for a WLC in an external field

We did not directly arrive at a Ψ (R) for the Kratky-Porod wormlike chain.
We will use the result proven in [1, 5] and assert that the WLC may be
treated as a differential space curve. We know from elasticity theory that
the bending energy for a stiff rod of length L is given by

U =
ε

2

L∫
0

ds

(
∂u

∂s

)2

, (3.29)

where ε is the bending modulus. For a WLC, this bending modulus is given
by

ε =
kT

2λ
. (3.30)

The conformational distribution function is just a Boltzmann weighting of
this bending energy.

Ψ (u, L) ∝ exp

− 1

4λ

L∫
0

ds

(
∂u

∂s

)2
. (3.31)
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Adding in the Boltzmann weighted energy from the external field, we get

Ψ (u, L) ∝ exp

− 1

4λ

L∫
0

ds

(
∂u

∂s

)2

− 1

kT

L∫
0

dsUe (R)

. (3.32)

Thus, the Green function is given by taking the appropriate integral over
the conformational distribution function per equation (3.25). We must take
the functional integral limit as in equation (3.27), but we will not show that
explicitly.

G (R,u|u0, L) =

u(L)=u∫
u(0)=u0

δR δ

R−
L∫

0

dsu


× exp

− 1

4λ

L∫
0

ds

(
∂u

∂s

)2

− 1

kT

L∫
0

dsUe (R)

. (3.33)

3.4 The Green function as a solution to a partial dif-
ferential equation

As we saw in the discussions at the beginning of section 3.3, obtaining the
Green function for a polymer configuration reveals all of the thermodynamic
information for the chain. However, the forms of the Green functions given
by equations (3.27) and (3.33) are entirely cumbersome and difficult to use
in any practical sense. Therefore, it would be very beneficial to find an
alternate, more tractable representation of the Green function.

It turns out that by employing the techniques of Feynman and Hibbs [7],
we can derive partial differential equations that describe the Green function.
We will derive the PDE for the continuous Gaussian chain following the
development of [2] and state the result for the WLC as derived by [5].

3.4.1 The Gaussian chain governing PDE

Assume we have a chain with Green function G (R,R′|L). Now we increase
the chain length from L to L+ ε where ε is small. Using equation (3.27), we
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can write

G (R,R′|L) =
R(L+ε)=R∫
R(0)=R′

δR exp

− 3

2b

L+ε∫
0

ds

(
∂R

∂s

)2

− 1

kT

L+ε∫
0

dsUe (R)

 (3.34)

Using equation (3.23), we can write

G (R,R′|L+ ε) =

∫
dR′′G (R,R′′|ε) G (R′′,R′|L) . (3.35)

Here, we have specified that R′′ ends at the point on the chain corresponding
to path length L. In doing this, there is a tiny piece of the chain between
L and L + ε, i.e. between R′′ and R. The Green’s function between these
two points will approach a delta function as ε → 0. We can employ the
definition of the delta function which describes it as a limit of the Gaussian
distribution. Thus, for small ε,

G (R,R′′|ε) ≈
(

3

2πbε

) 3
2

exp

(
−3 (R−R′′)2

2bε
− ε

kT
Ue

(
R + R′′

2

))
.(3.36)

The term with Ue is negligible in the limit of small ε, so this is still a valid
representation of the delta function.

Substituting equation (3.36) into (3.35) gives

G (R,R′|L+ ε) =

(
3

2πbε

) 3
2
∫
dR′′ exp

(
−3 (R−R′′)2

2bε
− ε

kT
Ue

(
R + R′′

2

))
×G (R′′,R′|L). (3.37)

We make the substitution of R′′ = R + η with dR′′ = dη. This gives

G (R,R′|L+ ε) =(
3

2πbε

) 3
2
∫
dη exp

(
−3η2

2bε
− ε

kT
Ue

(
R +

η

2

))
G (R + η,R′|L) . (3.38)

It is now convenient to Taylor expand the respective terms in equation
(3.38). We notice that

lim
ε→0+

(
3

2πbε

) 3
2

exp

(
−3η2

2bε

)
= δ (η) . (3.39)
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The term has an essential singularity as ε→ 0+ because it is a delta function
in that limit. Furthermore, for small ε, the delta function ensures that only
terms with very small η contribute significantly to the integral. Therefore
we should Taylor expand the rest of the terms about η = 0.

1

kT
εUe

(
R +

η

2

)
=

1

kT

(
εUe (R) +

ε

2
η · ∂Ue

∂R

)
+O (εη) . (3.40)

We substitute this expansion into the exponential and then expand the ex-
ponential to get

exp

(
−εUe
kT

(
R +

η

2

))
= 1− 1

kT
εUe (R) +O (εη) (3.41)

Now we Taylor expand the two Green functions

G (R,R′|L+ ε) = G (R,R′|L) + ε
∂

∂L
G (R,R′|L) +O

(
ε2
)

(3.42)

and

G (R + η,R′|L) = G (R,R′|L) + η · ∂
∂R

G (R,R′|L)

+
1

2
ηη :

∂2

∂R2
G (R,R′|L) +O

(
η3, η4

)
. (3.43)

Here, : denotes the dyadic product. Since after expansion all Green functions
are of the same form, we will define G ≡ G (R,R′|L) for brevity. We can
now put it all together to get

G + ε
∂G

∂L
+O

(
ε2
)

=

(
3

2πbε

) 3
2
∫
dη exp

(
−3η2

2bε

)(
1− 1

kT
εUe (R) +O (εη)

)
×
(

G + η · ∂
∂R

G +
1

2
ηη :

∂2

∂R2
G +O

(
η3, η4

))
(3.44)

Before we multiply the sums together, we should note that G is not a function
of η. We note further that all the integrals with respect to η are Gaussian
integrals of the form(

3

2πbε

) 3
2
∫
dη ηn exp

(
−3η2

2bε

)
, n integer, (3.45)
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which is a standard Gaussian integral. These integrals are zero for all odd
powers of n. The integrals for n = 0, 2, 4 are(

3

2πbε

) 3
2
∫
dη exp

(
−3η2

2bε

)
= 1 (3.46)(

3

2πbε

) 3
2
∫
dη η2 exp

(
−3η2

2bε

)
=

bε

3
(3.47)(

3

2πbε

) 3
2
∫
dη η4 exp

(
−3η2

2bε

)
= ε2. (3.48)

Taking all odd powered Gaussian integrals to be zero, substituting equa-
tions (3.46), (3.47), and (3.48) into equation (3.44), and simplifying yields

ε

(
∂

∂L
− b

6

∂2

∂R2
+
Ue
kT

)
G +O

(
ε2
)

= 0. (3.49)

Diving by ε and taking ε→ 0 yields(
∂

∂L
− b

6

∂2

∂R2
+
Ue
kT

)
G = 0. (3.50)

We must now define the boundary conditions. Harking back to equation
(3.36), we put ourselves at the start of the chain. For a very short chain,
G (R,R′|ε) approaches a delta function as ε→ 0+. Thus, our first boundary
condition is

G (R,R′|0) = δ (R−R′) . (3.51)

Next, we note that L < 0 is nonsense and G has a discontinuity across zero.
Thus, we have arrived at our final partial differential equation to describe a
Gaussian chain in an external field.(

∂

∂L
− b

6

∂2

∂R2
+
Ue
kT

)
G (R,R′|L) = δ (R−R′) δ (L) (3.52)

The equation is a diffusion-like equation with L being the “time” and b
6

being the diffusivity. The external field makes the solution difficult, which is
why excluded volume is so difficult to deal with.
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3.4.2 The wormlike chain governing PDE

The governing PDE for the wormlike chain is derived using a similar tech-
nique. The result, taken from [5], is stated here without proof. This solution
sets R′ ≡ 0.(

∂

∂L
− λ ∂2

∂u2
+ u · ∂

∂R
+
Ue
kT

)
G (R,u|u0, L) =

δ (u− u0) δ (R) δ (L) (3.53)

In this equation, we see that the “orientation” is diffusing with a diffu-
sivity proportional to the inverse of the persistence length. Thus, the more
stiff the chain is, the more slowly the orientation will diffuse along the chain
and the longer a given orientation will persist. Aside from the “time” term
(represented by the differential with respect to L), there is also a convection
term for the position of the chain.

4 Conclusions

We have seen three discrete and two continuous models used to describe
polymers. Even though they are simple in concept, they become complicated
quickly while manipulating them. The K-P WLC in an external field is
often only solvable numerically. Furthermore, it the stiffness parameter has
any nontrivial functionality, the PDE of equation (3.53) has nonconstant
coefficients. While using these and other models, one should choose the
simplest model possible to achieve the results he desires.

These models are the cornerstone of many studies in polymer physics
and will be the starting point as we delve into studies in excluded volume,
self-interactions, concentrated polymer solutions, and polymer dynamics.
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