Bacterial communities colonize and attach to solid surfaces thanks to adhesive molecules exposed on the bacterial outer envelope. While a substantial number of molecular actors involved in bacterial adhesion have been characterized, their dynamics and their coordination on the bacterial envelope remain out of sight because the secretion machineries interfere with the fluorescence of standard probes. Recently, we showed thanks to mechanical assays that adhesive molecules were enriched at the old pole of bacteria. From this polar localization at single cell level, it results that microcolonies composed of rod-shaped bacteria develop into dense aggregates rather than into chains where bacteria would be highly exposed to their environment. This organization at the level of the community has a large impact in terms of biofilm tolerance to antibiotics and causes major health concerns by generating nosocomial diseases. In this project, we propose to use a new generation of fluorescent reporters, in order to measure the spatial dynamics of adhesive proteins exposed on the cell envelope of E. coli. By comparing physical modeling and experiments, we will aim at understanding the microscopic mechanisms that are responsible for adhesion polarity at the single cell level and how antibiotics could perturb this polarity and thus the structure of bacterial communities.
We are looking specifically for physicists with a training in optics, image analysis and numerical simulations (we will not respond to candidates, who do not fit these requirements). Motivated candidates should contact Nicolas Desprat (nicolas.desprat@phys.ens.fr).